AREAS OF SCIENCE
Physics
Ski lifts make use of a type of simple machine called a pulley. A pulley is a wheel with a rope wrapped around it. Sometimes pulleys are used to help lift heavy objects vertically off the ground. Other times pulleys are used to transport things horizontally over long distances or across rough terrain (see Figure 2, below). They can also be used to move objects diagonally (a combination of horizontal and vertical movement) like with a ski lift. A pulley typically uses a wheel because it helps reduce friction, or the force that opposes motion between two surfaces that are sliding against each other. Friction can also generate heat and cause materials to wear down quickly.
Design and build your own model ski lift to transport an object from a start area to a finish area.
In this project, you will design and build a miniature model ski lift from ordinary materials you already have around your home. A model is a smaller version of something scientists and engineers build for testing purposes. For example, engineers build smaller models of cars, airplanes, and bridges to help them with their designs. Your goal will be to transport a cargo item from one point to another; however, Science Buddies will not provide an exact template or instructions to build your ski lift. This is an engineering design project, which means can think creatively about how to solve the problem, then design, test, and improve your own solution.
The goal of this project is to build a model ski lift device that can transport a small cargo item horizontally from a start area to a finish area (many real ski lift also go vertically up the side of a mountain, but you will start out with a flat surface). The catch is that the human operator can only touch the device in the start area. This makes a pulley system very useful for transporting the items horizontally.
Since this is an engineering project, you need to specify your design requirements. Here are the basic requirements for the project, but you can add your own requirements if you want:
Once you have defined your design requirements, you need to start designing your ski lift. The design phase is an important part of the engineering design process. There is no fixed procedure for this section; you get to come up with your own design! If you are new to the engineering design process, here are some suggested steps to get you started:
Figure 3. An example sketch for a ski lift design.
Figures 4–7, below, show some close-up pictures of the ski lift from the example video. You can use these pictures as inspiration for your design, but remember, you should come up with your own original design!
Figure 4. For the example model ski lift shown in the video above, the entire setup looks like this. The ski lift is designed to transport a small object from the start area (on the right) to the box in the finish area (on the left).
Figure 5. The supports at either end of the ski lift are made from plastic cups, wooden pencils, and tape. The plastic cups are taped to the tabletop so they do not fall over.
Figure 6. The string is wrapped around a paper clip at either end to form a simple pulley system. Even though the pulleys do not actually have wheels, the paper clips are very smooth, so the string can slide over them with very little friction.
Once you are done designing your ski lift, it is time to start building! Again, there is no fixed procedure for this section. How you build your ski lift will depend on the design you came up with and the materials you decided to use. Once you think your ski lift is ready, move on to the next section to begin testing.
Optional: If you have a digital camera or smartphone, take pictures of your ski lift. This will help you document your design process, which will be useful when you make your project display board.
Now it is time to test your ski lift, and possibly redesign it or make improvements, depending on how well it worked. Engineering projects rarely work perfectly on the first try! The process of redesigning and improving an engineering project is called iteration, which is an important part of the engineering design process. Here is a suggested procedure for testing your ski lift: